ε-subgradient algorithms for locally lipschitz functions on Riemannian manifolds
نویسندگان
چکیده
This paper presents a descent direction method for finding extrema of locally Lipschitz functions defined on Riemannian manifolds. To this end we define a set-valued mapping x → ∂εf(x) named ε-subdifferential which is an approximation for the Clarke subdifferential and which generalizes the Goldstein-ε-subdifferential to the Riemannian setting. Using this notion we construct a steepest descent method where the descent directions are computed by a computable approximation of the ε-subdifferential. We establish the convergence of our algorithm to a stationary point. Numerical experiments illustrate our results.
منابع مشابه
An effective optimization algorithm for locally nonconvex Lipschitz functions based on mollifier subgradients
متن کامل
Nonsmooth Trust Region Algorithms for Locally Lipschitz Functions on Riemannian Manifolds
This paper presents a Riemannian trust region algorithm for unconstrained optimization problems with locally Lipschitz objective functions defined on complete Riemannian manifolds. To this end we define a function Φ : TM → R on the tangent bundle TM , and at k-th iteration, using the restricted function Φ|TxkM where TxkM is the tangent space at xk, a local model function Qk that carries both fi...
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملConvergence Rates for Deterministic and Stochastic Subgradient Methods Without Lipschitz Continuity
We extend the classic convergence rate theory for subgradient methods to apply to non-Lipschitz functions. For the deterministic projected subgradient method, we present a global O(1/ √ T ) convergence rate for any convex function which is locally Lipschitz around its minimizers. This approach is based on Shor’s classic subgradient analysis and implies generalizations of the standard convergenc...
متن کاملDini Derivative and a Characterization for Lipschitz and Convex Functions on Riemannian Manifolds
Dini derivative on Riemannian manifold setting is studied in this paper. In addition, a characterization for Lipschitz and convex functions defined on Riemannian manifolds and sufficient optimality conditions for constraint optimization problems in terms of the Dini derivative are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 42 شماره
صفحات -
تاریخ انتشار 2016